Мытарева Алина Игоревна

«Селективное каталитическое восстановление NO_x аммиаком на композитных катализаторах» Шифр специальности 02.00.15 Химические науки Шифр диссертационного совета Д 002 222 02 Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук 119991, Москва, Ленинский проспект, 47 Тел.:(499) 137-13-79 Е-mail: <u>sci-secr@ioc.ac.ru</u> Дата размещения полного текста диссертации на сайте Института http://zioc.ru/ 24 июля 2017 года

Дата приема к защите 01 августа 2017 года

Дата размещения автореферата на сайте ВАК vak3.ed.gov.ru 01 августа 2017 года

на правах рукописи

Horn

МЫТАРЕВА АЛИНА ИГОРЕВНА

СЕЛЕКТИВНОЕ КАТАЛИТИЧЕСКОЕ ВОССТАНОВЛЕНИЕ NO_x АММИАКОМ НА КОМПОЗИТНЫХ КАТАЛИЗАТОРАХ

02.00.15 – Кинетика и катализ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва – 2017

Работа выполнена в лаборатории катализа нанесенными металлами и их оксидами № 35 Федерального государственного бюджетного учреждения науки Института органической химии имени Н.Д. Зелинского РАН (ИОХ РАН).

Научный руководитель:	Стахеев Александр Юрьевич						
	доктор химических наук, профессор, заведующий						
	лабораторией катализа нанесенными металлами и и						
	оксидами №35 Института органической химии имен						
	Н. Д. Зелинского РАН						
Официальные оппоненты:	Темкин Олег Наумович						
	Заслуженный деятель науки РФ, доктор химических нау						
	профессор, профессор кафедры химии и технологии						
	основного органического синтеза Института тонких						
	химических технологий Московского технологическог университета						
	Смирнов Андрей Валентинович						
	кандидат химических наук, старший научный сотрудник						
	кафедры физической химии Химического факультета						
	Московского государственного университета имени						
	М. В. Ломоносова						
Ведущая организация:	Федеральное государственное бюджетное учреждение						
	науки Институт катализа имени Г.К. Борескова СО РАН						

Защита состоится «17» октября 2017 г. в 11.00 на заседании диссертационного совета Д 002.222.02 в Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского РАН по адресу: 119991, г. Москва, Ленинский проспект, д. 47, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ИОХ РАН и на сайте <u>http://zioc.ru/</u>. Автореферат разослан «<u>14</u> » <u>августа</u> 2017 года.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991 г. Москва, Ленинский проспект, 47, ученому секретарю Диссертационного совета ИОХ РАН.

Ученый секретарь диссертационного совета Д 002.222.02 доктор химических наук

Kent

Елисеев О.Л.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Оксиды азота (NO_x = NO, NO₂) – токсичные вещества, оказывающие негативное воздействие не только на жизнь и здоровье людей, но и на окружающую среду в целом. Ежегодно в результате деятельности человека в атмосферный воздух выбрасывается около 60 млн т NO_x. К основным антропогенным источникам относятся: 1) транспорт, 2) тепловые электростанции, 3) химические предприятия (производство азотной кислоты, взрывчатых веществ и удобрений), 4) сельское хозяйство. На долю транспорта приходится около половины антропогенной эмиссии оксидов азота, что связано с постоянным расширением парка автомобилей во всем мире. Особенно остро вопрос эмиссии оксидов азота стоит в местах хозяйственной деятельности человека: концентрация NO_x в крупных городах на несколько порядков выше естественной фоновой концентрации.

По этой причине важной задачей является разработка каталитических систем очистки выхлопных газов автомобилей от оксидов азота. Для автотранспорта с бензиновыми двигателями эта задача решается установкой трехмаршрутного катализатора, обеспечивающего протекание реакции каталитического восстановления NO_x монооксидом углерода или остаточными углеводородами до безвредного N_2 . Однако для автомобилей с дизельными двигателями этот тип катализатора неэффективен, поскольку их выхлопные газы содержат значительное количество кислорода (до 15 об. %), который вступает в реакцию с восстановителем, снижая его концентрацию, а, следовательно, и эффективность восстановления NO_x . Таким образом, необходим катализатор, обеспечивающий селективное взаимодействие восстановителя с оксидами азота в присутствии большого избытка O_2 .

В настоящее время для удаления оксидов азота из выхлопных газов дизельных двигателей используется реакция селективного каталитического восстановления аммиаком (NH₃-CKB), протекающая на катализаторах V_2O_3 -WO₅/TiO₂ или Fe- и Cu-содержащих цеолитах. Основным недостатком этих каталитических систем является низкая эффективность при температурах до 250 °C, что является очень важным параметром, поскольку температура выхлопных газов дизельных двигателей, как правило, не превышает 150–400 °C.

В связи с этим актуальной задачей является разработка и исследование нового поколения катализаторов селективного каталитического восстановления NO_x для очистки выхлопных газов автомобильных дизельных двигателей. При этом принципиальное значение имеет не только повышение эффективности удаления оксидов азота в низкотемпературной области, но и увеличение селективности действия каталитических систем в условиях высокой концентрации кислорода.

Степень разработанности темы

Усилия многих исследовательских групп во всем мире направлены на разработку каталитических систем, обеспечивающих высокую эффективность селективного восстановления оксидов азота в области температур 150–400 °C. Перспективным направлением является создание сложных оксидных композиций (нанесенных и

ненанесенных), содержащих Mn, Ce, V, Fe, Cu и другие элементы, обладающих высокой каталитической активностью при температурах ниже 250 °C. Однако рабочий интервал таких систем недостаточно широк (100–250 °C), а обеспечиваемая ими в ходе реакции NH_3 -СКВ селективность образования N_2 зачастую невысока.

В последние годы было показано, что перспективным альтернативным решением данной проблемы может быть использование композитных каталитических систем, получаемых механическим смешением оксидного катализатора и цеолитного компонента. Высокая активность таких композиций в области температур 150–400 °C обусловлена выраженным синергетическим эффектом, возникающим при смешении компонентов, однако причины, ответственные за появление этого эффекта, остаются невыясненными. Остается неясной и роль каждого из компонентов в протекании реакции NH₃-CKB. Все это не позволяет проводить целенаправленную оптимизацию каталитических характеристик композитных катализаторов.

Цель и задачи работы

Цель работы заключалась в установлении природы эффекта синергизма, возникающего между оксидным и цеолитным компонентами композитных катализаторов в реакции селективного каталитического восстановления NO_x аммиаком, и создании композитного катализатора, обладающего высокой эффективностью в широком температурном интервале.

Для достижения поставленной цели необходимо было решить следующие задачи:

 Разработать методологию, позволяющую детально исследовать маршрут протекания реакции селективного каталитического восстановления на композитных катализаторах;

– установить роль оксидного и цеолитного компонентов композитного катализатора в протекании реакции NH_3 -СКВ и выяснить механизм эффекта синергизма, обеспечивающего высокую активность композитных систем в области температур 150–400 °C;

 на основе полученных данных о природе эффекта синергизма предложить способы регулирования каталитических характеристик композитных систем и методы повышения их низкотемпературной активности;

 оценить перспективность использования композитных катализаторов в качестве многофункциональных систем нейтрализации выхлопных газов дизельных двигателей, позволяющих одновременно с NO_x удалять несгоревшие углеводороды, CO, сажу и избыточный NH₃.

Научная новизна

Впервые проведено систематическое исследование реакции селективного каталитического восстановления NO_x аммиаком на композитных катализаторах, содержащих оксидный и цеолитный компоненты. Показано, что высокая каталитическая активность таких катализаторов обусловлена ярко выраженным эффектом синергизма, возникающим между их компонентами.

С высокой степенью достоверности определена роль оксидного и цеолитного компонентов в общем ходе реакции восстановления NO_x на композитных катализаторах. Предложен маршрут протекания реакции NH_3 -СКВ на композитных системах, включающий в себя две стадии: 1) окисление NO до NO_2 на оксидном компоненте и 2) восстановление смеси NO+NO₂ аммиаком («быстрое» СКВ) на цеолитном компоненте.

Установлено, что для эффективного протекания процесса NH₃-CKB на композитных катализаторах принципиальное значение имеет высокая скорость протекания реакций окисления NO (на оксидном компоненте) и «быстрого» CKB (на цеолитном компоненте), а также наличие плотного контакта между компонентами.

Впервые продемонстрирована эффективность использования композиций на основе оксидного и цеолитного компонентов в качестве полифункциональных каталитических систем, позволяющих эффективно удалять основные компоненты (углеводороды, CO, NO_x, сажу и избыточный NH₃) из выхлопных газов автомобилей в области температур 150–400 °C.

Теоретическая и практическая значимость работы

Впервые установлены основные маршруты протекания реакций селективного каталитического восстановления оксидов азота и селективного окисления аммиака на композитных катализаторах. Результаты исследования позволили предложить методы повышения активности и селективности композитных систем.

С практической точки зрения особый интерес представляет тот факт, что разработанные в ходе выполнения диссертационной работы композитные катализаторы обладают активностью в интервале температур, характерном для выхлопных газов дизельных двигателей. Кроме того, было показано, что на них можно одновременно и с высокой эффективностью проводить несколько реакций (восстановление NO_x и окисление CO, углеводородов, сажи, избыточного NH₃), необходимых для комплексной очистки выхлопных газов дизельных двигателей.

Методология и методы исследования

Для исследования маршрута протекания реакции NH₃-CKB на композитных катализаторах была разработана новая методология, основанная на создании модельной системы, компоненты которой не обладают индивидуальной активностью в исследуемом процессе. Такой подход позволил обнаружить возникновение синергетического взаимодействия между компонентами и детально исследовать его природу.

Для изучения каталитических свойств индивидуальных компонентов и композитных катализаторов на их основе была сконструирована каталитическая установка, оснащенная комплексной аналитической системой, в состав которой входили: газовый ИК–Фурье спектрометр Gasmet Dx–4000 и хемилюминесцентный газовый анализатор EcoPhysics CLD 822Mh. Установка позволяет проводить исследование каталитических характеристик в условиях, соответствующих работе реального дизельного двигателя – при высоких скоростях потока и сложном составе газовой смеси.

Структура, состав и свойства катализаторов были изучены с использованием комплекса физико-химических методов анализа: температурно-программированного

восстановления водородом (H₂-TПВ), температурно-программированной десорбции аммиака (NH₃-TПД), атомно-абсорбционной спектроскопии (AAC) и сканирующей электронной микроскопии высокого разрешения (СЭМ).

На защиту выносятся:

- Результаты исследования каталитических свойств модельной композитной системы в реакциях NH₃-CKB оксидов азота, окисления NO и NH₃.
- Предложенная схема протекания процесса NH₃-CKB на композитных каталитических системах и оценка роли оксидного и цеолитного компонентов в общем ходе процесса.
- Разработанные методы увеличения активности композитных каталитических систем в селективном восстановлении оксидов азота.
- Результаты исследования каталитических свойств композитных катализаторов в условиях, максимально приближенных к реальным условиям эксплуатации катализаторов очистки выхлопных газов автомобильных двигателей.

Степень достоверности

Достоверность результатов обеспечена проведением каталитических экспериментов на установке, оснащенной современным аналитическим оборудованием, хорошей воспроизводимостью и согласованностью полученных на ней экспериментальных данных, а также надежностью использованных в ходе работы физико-химических методов анализа.

Личный вклад соискателя

Автор диссертации, Мытарева А.И., принимала участие в постановке цели и задач диссертационной работы, самостоятельно синтезировала образцы катализаторов, проводила каталитические тесты, обрабатывала полученные результаты, интерпретировала данные физико-химических методов анализа, представляла полученные результаты в форме устных и стендовых докладов на российских и международных конференциях. Также автором были подготовлены статьи к публикации в рецензируемых научных журналах.

Апробация работы

Отдельные части работы были представлены в виде 7 тезисов докладов на российских и международных конференциях: 7th Tokyo Conference on Advanced Catalytic Science and Technology: TOCAT7 (June 1–6, 2014, Kyoto, Japan); 7-я Всероссийская цеолитная конференция: 7ВЦК (16–18 июня 2015, Звенигород, Россия); 10th International Congress on Catalysis and Automotive Pollution Control: CAPoC10 (October 28–30 2015, Brussels, Belgium); 4th German-Russian Seminar on catalysis (September 5–11 2016, Kloster Banz, Bad Staffelstein, Germany); X International Conference Mechanisms of Catalytic Reactions: X MCR (October 2–6 2016, Svetlogorsk, Kaliningrad region, Russia); VII Молодежная конференция ИОХ РАН (17–18 мая 2017, Москва, Россия); III Российский конгресс по катализу: Роскатализ-2017 (22–26 мая 2017, Нижний Новгород, Россия).

Публикации

По результатам работы опубликовано 4 статьи в научных журналах, рекомендованных ВАК, а также 7 тезисов докладов (устных и стендовых) на научных конференциях.

Объем и структура работы

Диссертация изложена на 152 страницах, состоит из введения, 3 глав (Литературный обзор, Экспериментальная часть, Результаты и их обсуждение), выводов, списка сокращений и условных обозначений, а также списка литературы и приложения. Библиография насчитывает 331 литературный источник.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** обоснована актуальность проблемы, сформулированы цель и задачи исследования, обсуждены научная новизна и практическая значимость полученных результатов, а также приведены основные положения, выносимые на защиту.

В Главе 1 представлен обзор научно-технической и патентной литературы по современным методам очистки выхлопных газов автомобилей от оксидов азота с указанием их преимуществ и недостатков. Особое внимание уделено рассмотрению наиболее эффективных способов повышения низкотемпературной каталитической активности. Проанализированы современные представления о механизме реакции NH₃-CKB NO_x на оксидных и цеолитных катализаторах.

В Главе 2 приведены методики приготовления катализаторов и описаны методы исследования их физико-химических и каталитических свойств.

В качестве цеолитных компонентов композитных катализаторов использовали коммерческие образцы NH₄-Beta («Zeolyst»; Si/Al=12,5; удельная площадь поверхности – 657 м²/г; объем пор – 0,37 см³/г; размер частиц – 0,5 мкм), FeBeta (Si/Al=12,5; «Zeolyst»), а также H-Beta (Si/Al=11,5), синтезированный с применением особо чистых реагентов (с ультрамалым содержанием железа). Далее в тексте цеолитные компоненты будут обозначаться HFeBeta, FeBeta, H(Fe)Beta, соответственно.

В качестве оксидных компонентов использовали коммерческий образец $Ce_{0,75}Zr_{0,25}O_2$ («Ecoalliance»; кубическая модификация; удельная площадь поверхности – 103 м²/г; объем пор – 0,31 см³/г; размер частиц – 35,6 мкм) и его Мп- и Мп-Се- модификации. Образец 8%Мп/Ce_{0,75}Zr_{0,25}O₂ готовили методом пропитки по влагоемкости исходного носителя водным раствором нитрата марганца. 8%Мп-8%Се/Ce_{0,75}Zr_{0,25}O₂ получали путем совместной пропитки Ce_{0,75}Zr_{0,25}O₂ водным раствором нитратов марганца и церия. Образцы прокаливали в токе сухого воздуха при 550 °C (4 ч). Далее в тексте оксидные компоненты будут обозначаться CeO₂-ZrO₂, Mn/CeO₂-ZrO₂ и Mn-Ce/CeO₂-ZrO₂, соответственно.

Композитные катализаторы [оксидный компонент+цеолитный компонент] готовили путем тщательного перетирания в ступке или перемешивания в шаровой мельнице порошков оксидного и цеолитного компонентов в объемном соотношении, варьируемом в пределах от 30/1 до 1/3, до получения однородной смеси (в маркировке композитного катализатора объемное соотношение указано в круглых скобках).

Структуру, состав и свойства катализаторов изучали методами температурнопрограммированного восстановления водородом (H₂-TПВ), температурнопрограммированной десорбции аммиака (NH₃-TПД), атомно-абсорбционной спектроскопии (AAC) и сканирующей электронной микроскопии высокого разрешения (CЭМ).

Исследование каталитических свойств композитных катализаторов и индивидуальных компонентов в реакциях «стандартного» и «быстрого» СКВ, а также в реакциях окисления NH_3 и NO проводили на установке проточного типа при атмосферном давлении в температурном интервале 500–100 °C. Поскольку для индивидуальных тестов использовалось такое же количество каждого из компонентов, как в составе композитного катализатора, объемная скорость составляла: 270 000 ч⁻¹ для композитного катализатора, 360 000 ч⁻¹ для оксидного компонента и 1 075 000 ч⁻¹ для цеолитного компонента. Скорость газового потока – 300 мл/мин.

Исходную газовую смесь и продукты реакции анализировали с использованием аналитической системы, состоящей из ИК-Фурье газоанализатора «Gasmet» (Temet Instruments DX-4000) и хемилюминесцентного NO/NO_x газоанализатора «Eco Physics» (Eco Physics CLD M822h). Составы реакционных смесей указаны в подписях к рисункам.

Активность индивидуальных компонентов и композитных катализаторов на их основе оценивали по конверсиям $NO_x(X_{NO_y})$ и $NH_3(X_{NH_3})$, рассчитанным по формулам:

$$X_{NO_{x}} = \frac{C_{_{6x,NO}} - (C_{_{6blx,NO}} + C_{_{6blx,NO_{2}}} + 2C_{_{6blx,N_{2}O}})}{C_{_{6x,NO}}}$$
(1)

$$X_{NH_{3}} = \frac{C_{ex,NH_{3}} - C_{eblx,NH_{3}}}{C_{ex,NH_{3}}}$$
(2)

где *С*_{*вх*} и *С*_{*вых*} – концентрации соответствующих газов на входе и выходе из реактора.

Дополнительно были рассчитаны константы скорости (k, см³/(г·с)) и определены величины наблюдаемых энергий активации ($E_{a\kappa m}$, кДж/моль) реакций NH₃-CKB и окисления NO на индивидуальных компонентах и их механических смесях. Оценка кинетических параметров проводилась при конверсии NO, не превышающей 20 %.

$$k = -\frac{F_{NO}}{C_{NO,sx}^{t} m_{\kappa am}} \ln(1 - \chi), \qquad (3)$$

где F_{NO} – скорость потока NO (моль NO/с); $C'_{NO,ex}$ – концентрация NO на входе в реактор при температуре реакции (моль/см³); $m_{\kappa am}$ – масса катализатора (г), χ –конверсия NO.

В Главе 3 обобщены результаты исследования закономерностей протекания реакции селективного каталитического восстановления NO_x аммиаком на композитных катализаторах.

3.1 Эффект синергизма в композитных системах [оксидный компонент+цеолит]

На данном этапе исследования было необходимо решить две основные задачи:

1. Исследовать каталитические свойства композитного катализатора

 $[CeO_2-ZrO_2+FeBeta]$ (3/1)^{**}и его компонентов в индивидуальном состоянии и количественно оценить величину синергетического эффекта.

2. Провести детальный анализ продуктов реакции для выяснения характера процессов, протекающих на индивидуальных компонентах и композитном катализаторе.

1) Оценка величины эффекта синергизма

Величину эффекта синергизма оценивали, сравнивая активности индивидуальных компонентов с активностью композитного катализатора, полученного их механическим смешением. Температурные зависимости конверсии NO_x для индивидуальных компонентов и композитного катализатора приведены на Рис. 1.

Рисунок 1 – Температурные зависимости конверсии NO_x , полученные на компонентах CeO_2 -Zr O_2 , FeBeta и катализаторе [CeO_2-Zr O_2 +FeBeta] (3/1). Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂

<u>Активность FeBeta</u> Цеолитный компонент FeBeta (Рис. 1, •) обладает значительной активностью в реакции NH₃-CKB, однако конверсия NO_x на нем не превышает 70 % даже при $T_{peaky.} = 500$ °C. Это связано с тем, что для индивидуального теста использовалось то же количество цеолита, что и в составе композитного катализатора (1/3 по объему), поэтому реакцию на FeBeta проводили при высокой объемной скорости (1 075 000 ч⁻¹). Измеренная величина E_{akm} составляет (61,1 ± 0,7) кДж/моль, что хорошо согласуется с литературными данными.

<u>Активность CeO₂-ZrO₂</u>. Оксидный компонент CeO₂-ZrO₂ (Рис. 1, Δ) малоактивен в реакции NH₃-CKB. Более того, при увеличении температуры реакции выше 400 °C расчетная величина конверсии NO_x приобретает отрицательные значения. Это вызвано тем, что на CeO₂-ZrO₂ начинает с заметной скоростью протекать реакция окисления NH₃, что приводит к образованию дополнительного количества оксида азота (см. далее). В результате этого концентрация оксидов азота на выходе из реактора становится выше, чем на входе.

Таким образом, суммарная величина конверсии NO_x , которую можно было бы ожидать, предполагая, что реакция NH_3 -СКВ протекает на компонентах композитного катализатора независимо, должна определяться активностью цеолитного компонента FeBeta, тогда как присутствие CeO₂-ZrO₂ может приводить лишь к некоторому снижению

^{**} Выбор данной системы был обусловлен тем, что композиции [CeO₂-ZrO₂+FeBeta] обладают комплексом каталитических характеристик, необходимых для создания комбинированных автомобильных каталитических систем [активный сажевый фильтр+катализатор CKB].

общей конверсии при $T_{peaky.}$ > 400 °C за счет протекания реакции окисления аммиака. Результат алгебраического суммирования величин конверсий NO_x на индивидуальных компонентах композитного катализатора также приведен на Рис. 1 (×).

<u>Активность [CeO₂-ZrO₂+FeBeta] (3/1).</u> Проведение реакции NH₃-CKB на композитном катализаторе [CeO₂-ZrO₂+FeBeta] (3/1) (Puc. 1, \blacklozenge) показало, что его активность существенно выше суммарной активности индивидуальных компонентов. Величина конверсии NO_x в температурном интервале 150–250 °C на [CeO₂-ZrO₂+FeBeta] (3/1) превышает величину суммарной конверсии (Рис. 1, ×) на индивидуальных компонентах в 5-6 раз.

Полученные результаты позволяют сделать вывод, что активность композитного катализатора в значительной степени определяется эффектом синергизма, возникающим при механическом смешении оксидного и цеолитного компонентов.

2) Детальный анализ продуктов реакции

<u>FeBeta</u> При температурах выше 150 °C наблюдается параллельное снижение концентраций NO и NH₃ (Puc. 2A), что соответствует протеканию реакции «стандартного» СКВ:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O \tag{1}$$

Поскольку образование побочных продуктов не наблюдается, можно заключить, что основным продуктом реакции является молекулярный азот.

<u>CeO₂-ZrO₂.</u> При T_{peaky} > 200 °C на CeO₂-ZrO₂ компоненте наблюдается снижение концентрации NO, которое сопровождается параллельным увеличением концентрации NO₂, при этом концентрация аммиака вплоть до 330–350 °C остается постоянной (Рис. 2Б). Наблюдаемые изменения в составе реагентов и продуктов позволяют сделать вывод, что в интервале температур от 200–330 °C единственной реакцией, протекающей на оксидном компоненте является окисление монооксида азота в диоксид:

$$2NO + O_2 \leftrightarrow 2NO_2 \tag{2}$$

Рисунок 2 – Температурные зависимости концентрации реагентов и продуктов, полученные в ходе реакции NH₃-CKB на A) FeBeta, Б) CeO₂-ZrO₂, B) [CeO₂-ZrO₂+FeBeta] (3/1). Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂

Дальнейшее увеличение температуры реакции (> $330 \,^{\circ}$ C) приводит к резкому снижению концентрации аммиака, сопровождаемому увеличением концентрации NO, в результате чего суммарное содержание NO_x в продуктах реакции превосходит их входную концентрацию. Анализ продуктов реакции указывает на то, что наблюдаемые изменения связаны с протеканием реакции окисления аммиака:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \tag{3}$$

Таким образом, основные реакции, которые протекают на CeO_2 -ZrO₂ компоненте, описываются уравнениями (2) и (3).

[CeO₂-ZrO₂+FeBeta] (3/1). Как и в случае FeBeta, на композитном катализаторе наблюдается параллельное снижение концентраций NO и NH₃, что указывает на протекание реакции восстановления оксидов азота аммиаком (Рис. 2В). Однако, на композитном катализаторе эта реакция начинается при существенно более низкой температуре (> 120 °C), и уже при T_{peaky} . > 300 °C монооксид азота полностью исчезает из продуктов реакции. Кроме того, при температурах выше 380 °C, наблюдается снижение концентрации остаточного аммиака, что связано с протеканием реакции окисления:

$$4\mathrm{NH}_3 + 3\mathrm{O}_2 \rightarrow 2\mathrm{N}_2 + 6\mathrm{H}_2\mathrm{O} \tag{4}$$

Изменение состава продуктов в ходе реакции NH_3 -СКВ на композитном катализаторе отличается от предполагаемого на основании анализа данных, полученных для индивидуальных компонентов. Так, несмотря на то, что основным компонентом композитного катализатора является CeO_2 -ZrO₂, на котором образуется значительное количество диоксида азота (2), в продуктах реакции на композитном катализаторе NO_2 полностью отсутствует. Кроме того, в ходе реакции на композитном катализаторе не наблюдается образования дополнительного количества NO по реакции (3) на CeO_2 -ZrO₂.

Анализ полученных результатов, а также литературных данных позволил предположить, что причиной этого является вовлечение диоксида азота, образующегося на CeO₂-ZrO₂, в реакцию «быстрого» CKB [1], протекающую с высокой скоростью на цеолитном компоненте:

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O \tag{5}$$

Таким образом, восстановление оксидов азота на композитном катализаторе $[CeO_2-ZrO_2+FeBeta]$ (3/1) может протекать по двум маршрутам: 1) по маршруту «стандартного» СКВ на цеолитном компоненте и 2) по двухстадийному маршруту, включающему в себя окисление NO на оксидном компоненте с последующим восстановлением смеси NO+NO₂ на цеолитном компоненте по реакции «быстрого» СКВ (Схема 1). При этом скорость реакции по двухстадийному маршруту в 4–5 раз превышает скорость реакции, протекающей по «стандартному» пути. Следует отметить, что снижение кажущейся энергии активации с (61,1±0,7) кДж/моль (для FeBeta) до (47,9±3,2) кДж/моль (для [CeO₂-ZrO₂+FeBeta] (3/1)) косвенно подтверждает гипотезу об изменении основного пути протекания реакции NH₃-CKB на композитном катализаторе.

<u>M</u>	<u>аршрут 1 – стандартный</u>					
FeBeta:	2NO + 2NH ₃ + 1/2O ₂ \rightarrow 2N ₂ + 3H ₂ O – «стандартное» СКВ					
<u> Маршрут 2 – двухстадийный</u>						
CeO ₂ -ZrO ₂ :	2NO + $O_2 \leftrightarrow 2NO_2$ – окисление NO					
FeBeta:	$NO_2 + NO + 2NH_3 \rightarrow 2N_2 + 3H_2O - «быстрое» СКВ$					

Схема 1 – Маршруты протекания реакции восстановления NO_x аммиаком на композитном катализаторе

Согласно предложенной гипотезе, в ходе реакции NH₃-CKB на композитных катализаторах значительную роль играет двухстадийный маршрут. Это позволяет предположить, что возможно создание композитного катализатора, компоненты которого не обладают индивидуальной активностью в реакции «стандартного» CKB и реакция восстановления NO_x на котором протекает исключительно по двухстадийному маршруту. Поскольку такая модельная каталитическая система может служить убедительным доказательством предложенной гипотезы и позволит более детально исследовать механизм синергетического взаимодействия между компонентами, на следующем этапе исследования была поставлена задача ее создания.

3.2 Создание модельного композитного катализатора

Основная задача данного этапа исследования заключалась в том, чтобы свести к минимуму вклад «стандартного» маршрута, обеспечив протекание реакции восстановления NO_x на модельном композитном катализаторе исключительно по двухстадийному маршруту (Схема 1). Для создания такого модельного композитного катализатора было необходимо выбрать цеолитный компонент, неактивный в реакции «стандартного» СКВ, но обладающий достаточной активностью в реакции «быстрого» СКВ, которая является второй стадией двухстадийного маршрута. Анализ имеющихся литературных данных показал, что существует принципиальная возможность регулирования активности катализатора FeBeta в этих двух реакциях путем варьирования содержания железа в цеолите. Для проверки этой гипотезы в реакциях «стандартного» и «быстрого» СКВ были детально исследованы образцы цеолитов Beta с различным содержанием Fe (установлено методом AAC): 0,9 мас. % (FeBeta); 0,02 мас. % (HFeBeta) и ультрамалым содержанием железа 0,002 мас. % (H(Fe)Beta).

1) Зависимость активности цеолитов Beta в реакции «стандартного» СКВ от содержания Fe

Наибольшей активностью в реакции «стандартного» СКВ обладает образец FeBeta (Рис. 3А). Цеолит HFeBeta, содержащий 0,02 мас. % железа, малоактивен, измеримая конверсия NO_x на нем наблюдается лишь при температурах выше 300 °C и не превосходит 40 % даже при 500 °C. На образце H(Fe)Beta скорость реакции «стандартного» СКВ ниже измеримого уровня.

Сравнение констант скоростей и величин частоты оборотов (TOF^{*}), рассчитанных для цеолитов FeBeta и HFeBeta (Табл. 1) позволяет сделать вывод, что активность цеолитов

^{*} Значения TOF (Turnover frequency) рассчитывались как отношение количества молекул NO_x, прореагировавших в единицу времени (моль/с), к количеству активных центров (моль) в приближении, что все Fe-содержащие центры цеолитов принимают участие в каталитическом процессе.

в реакции «стандартного» СКВ прямо пропорциональна концентрации Fe, что хорошо согласуются с литературными данными.

Рисунок 3. Температурные зависимости конверсии NO_x, полученные на цеолитах Beta с различным содержанием железа в ходе реакции А) «стандартного» СКВ (600 м.д. NH₃, 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂) и Б) «быстрого» СКВ (600 м.д. NH₃, 250 м.д. NO, 250 м.д. NO₂, 10 об. % O₂, 6 об. % H₂O в N₂)

Таблица	1. (Сравнение	цеолитов	Beta	с	различным	содержанием	железа	по	ИХ	активности	B
реакции «	«ста	ндартного»	» СКВ									

Образец	Содержание Fe, %	Конверсия, %	k(260°C), см ³ г ⁻¹ с ⁻¹	$\text{TOF} \times 10^2$, c ⁻¹
FeBeta	0,9	73	369,8	1,3
HFeBeta	0,02	3	5,3	1,7
H(Fe)Beta	0,002	0	_	_

2) Зависимость активности цеолитов Вета в реакции «быстрого» СКВ от содержания Fe

Цеолиты FeBeta и HFeBeta идентичны по активности в реакции «быстрого» СКВ: на обоих цеолитах конверсия 95–96 % достигается при температурах выше 190 °С (Рис. 3Б). Цеолит H(Fe)Beta обладает меньшей каталитической активностью, на что указывает смещение конверсионной кривой в область более высоких температур.

Таким образом, сопоставление результатов исследования каталитических свойств цеолитов Веta с различным содержанием Fe в реакциях «стандартного» и «быстрого» СКВ показывает, что для создания модельной системы в качестве цеолитного компонента наиболее целесообразно использовать HFeBeta с содержанием Fe 0.02 мас. %. С одной стороны, этот цеолит не уступает по активности в реакции «быстрого» СКВ FeBeta. С другой стороны, его активность в реакции «стандартного» СКВ в интервале температур 100–400 °С несущественна.

<u>3.3 Каталитические свойства модельной композитной системы [CeO₂-ZrO₂+HFeBeta]</u>

Основной целью данной части работы было исследование каталитических свойств модельной композитной системы [CeO₂-ZrO₂+HFeBeta] (3/1) в реакции селективного

Активность в реакции NH₃-СКВ

На Рис. 4 приведены зависимости конверсии NO_x от температуры реакции NH₃-CKB при её протекании на индивидуальных компонентах CeO₂-ZrO₂ и HFeBeta^{*} (Рис. 4, \circ и Δ) и на композитном катализаторе, полученном их механическим смешением (Рис. 4, \blacksquare) Несмотря на то, что индивидуальные компоненты в NH₃-CKB практически неактивны, композитный катализатор обладает высокой активностью в широком интервале температур.

Сопоставление данных, полученных на модельной каталитической системе $[CeO_2-ZrO_2+HFeBeta]$ (3/1) (Рис. 4, **•**) и катализаторе $[CeO_2-ZrO_2+FeBeta]$ (3/1), изученном на первом этапе работы (рис. 4, **•**), показывает, что их каталитические характеристики практически идентичны, несмотря на то, что входящие в их состав цеолиты FeBeta и HFeBeta существенно отличаются по активности в реакции «стандартного» СКВ.

Рисунок 4 – Температурные зависимости конверсии NO_x , полученные на компонентах CeO_2 -Zr O_2 , FeBeta и катализаторах [CeO_2-Zr O_2 +HFeBeta] (3/1), [CeO_2-Zr O_2 +FeBeta] (3/1). Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O_2 , 6 об. % H₂O в N₂

Это позволяет сделать вывод, что индивидуальная активность цеолитного компонента в реакции «стандартного» СКВ играет незначительную роль и двухстадийный маршрут является основным в реакции восстановления NO_x на композитных катализаторах. Дополнительным подтверждением этого вывода является то, что кажущиеся энергии активации E_{akm} реакции NH₃-CKB при ее протекании на катализаторах [CeO₂-ZrO₂+FeBeta] (3/1) и [CeO₂-ZrO₂+HFeBeta] (3/1) практически идентичны и составляют (47,9±3,2) кДж/моль и (49,2±4,0) кДж/моль, соответственно, и значительно ниже, чем E_{akm} реакции NH₃-CKB на FeBeta (61,1±0,7) кДж/моль.

Активность в реакции окисления NH₃

Необходимость исследования каталитических характеристик композитного катализатора и его компонентов в реакции окисления NH₃ вызвана двумя причинами. С одной стороны, окисление аммиака до NO (3), протекающее параллельно основному процессу NH₃-CKB, может негативно сказываться на основной реакции в результате

^{*} Более низкая конверсия NO_x на HFeBeta связана с тем, что в отличие от экспериментов, описанных в разделе 3.2, здесь и далее в индивидуальных тестах использованы те же количества цеолитного компонента, что и в составе композитного катализатора. В связи с этим объемная скорость увеличена с 270 000 ч⁻¹ до 1 075 000 ч⁻¹.

нецелевого расходования NH₃ и образования дополнительного количества NO. С другой стороны, существует необходимость удалять избыточное (сверхстехиометрическое) количество NH₃, которое вводится в выхлопные газы для обеспечения полного восстановления оксидов азота. Традиционно эта задача решается установкой дополнительного катализатора, способного селективно окислять избыточный NH₃ до N₂ (4). В связи с этим возможность проведения как реакции NH₃-CKB, так и реакции селективного окисления избыточного NH₃ на одном катализаторе представляет значительный интерес, поскольку позволяет сделать систему очистки выхлопных газов более компактной и снизить ее стоимость.

<u>HFeBeta</u>. Цеолитный компонент практически неактивен в исследуемой реакции, и конверсия NH_3 на нем не превышает 3–4 % даже при 500 °C (Рис. 5, \circ).

Рисунок 5 – Температурные зависимости конверсии NH_3 , полученные на компонентах CeO_2 - ZrO_2 , HFeBeta и катализаторе [CeO_2 - ZrO_2 +HFeBeta] (3/1). Реакционная смесь: 600 м.д. NH_3 , 10 об. % O_2 , 6 об. % H_2O в N_2

<u>CeO₂-ZrO₂</u>. В отличие от цеолитного компонента, оксидный компонент обладает значительной активностью (Рис. 5, Δ): конверсия NH₃ достигает $\approx 60 \%$ при 500 °C. Основным продуктом реакции является NO, часть которого затем окисляется до NO₂ (Рис. 6Б).

[CeO₂-ZrO₂+HFeBeta] (3/1). Сопоставление каталитических свойств композитного катализатора со свойствами индивидуальных компонентов позволяет сделать вывод, что и в реакции окисления NH₃ смешение компонентов приводит к выраженному синергетическому эффекту. На это указывают два фактора:

1) Скорость реакции окисления NH_3 на композитном катализаторе в 2 раза превышает сумму скоростей реакции окисления NH_3 на входящих в его состав оксидном и цеолитном компонентах. Так, конверсия NH_3 при 420 °C составила 23 % вместо ожидаемых 10 %, а при 460 °C – 53 % вместо 26 % (Рис. 5, ■).

2) Селективность [CeO₂-ZrO₂+HFeBeta] (3/1) радикально отличается от селективности CeO₂-ZrO₂. В продуктах реакции полностью отсутствуют NO и NO₂ (рис. 6В), образующиеся на оксидном компоненте, и единственным продуктом реакции является молекулярный азот.

Рисунок 6 – Температурные зависимости концентрации реагентов и продуктов, полученные в ходе реакции окисления NH₃ на A) HFeBeta, Б) CeO₂-ZrO₂, B) [CeO₂-ZrO₂+HFeBeta] (3/1). Реакционная смесь: 600 м.д. NH₃, 10 об. % O₂, 6 об. % H₂O в N₂.

Полученные данные позволяют предположить, что NO и NO₂, образующиеся на CeO_2 -ZrO₂, вступают в реакцию «внутреннего» СКВ, протекающую по двухстадийному маршруту, в ходе которого они восстанавливаются эквивалентным количеством аммиака на цеолитном компоненте (Схема 2). С одной стороны, это предположение позволяет объяснить наблюдаемое удвоение конверсии NH₃, а с другой – исчезновение оксидов азота из продуктов реакции. Полученные данные представляют значительный практический интерес, поскольку позволяют рассматривать композитные катализаторы в качестве перспективных систем, позволяющих одновременно удалять как оксиды азота, так и остаточный аммиак из выхлопных газов автомобилей (см. далее).

$$\begin{array}{ll} CeO_2 - ZrO_2: & 4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \\ CeO_2 - ZrO_2: & 2NO + O_2 \leftrightarrow 2NO_2 \\ FeBeta: & 2NO_2 + 2NO + 4NH_3 \rightarrow 4N_2 + 6H_2O \\ \hline \Sigma: & 8NH_3 + 6O_2 \rightarrow 4N_2 + 12H_2O \end{array} \right\} \begin{array}{l} \mathcal{A}_{Byxcmaduthatticle} Mapupym \\ \overset{(BHymperhaltor}{\leftarrow} Bymperhaltor Bymperhaltor$$

Схема 2 – Маршрут протекания реакции окисления аммиака на композитном катализаторе

Результаты исследования модельного композитного катализатора [CeO₂-ZrO₂+HFeBeta] (3/1) в реакциях NH₃-CKB и окисления NH₃ показали, что ключевую роль в протекании обеих реакций может играть предложенный ранее двухстадийный маршрут, благодаря которому и возникает синергетический эффект между оксидным и цеолитным компонентами. С целью получения дополнительных доказательств в пользу этой гипотезы, а также определения параметров, отвечающих за эффективность композитного катализатора в реакции NH₃-CKB, на следующем этапе исследования были детально изучены основные закономерности протекания реакции NH₃-CKB на модельной композитной системе.

<u>3.4 Исследование закономерностей протекания NH₃-CKB на композитном</u> катализаторе

Активность послойных загрузок катализаторов в реакции NH₃-CKB

Для подтверждения предположения о том, что NO_2 , образующийся на оксидном компоненте, является ключевым интермедиатом в реакции NH_3 -СКВ на композитных катализаторах, были проведены эксперименты с послойным расположением компонентов CeO_2 -ZrO₂ и HFeBeta. Варианты расположения слоев показаны на Рис. 7.

→HFeBeta||CeO₂-ZrO₂ (1-3). Система, в которой цеолитный компонент располагается над оксидным, практически неактивна в реакции NH₃-CKB: максимальная конверсия NO_x не превышает 5 % (350 °C) и представляет собой алгебраическую сумму конверсий, полученных на индивидуальных компонентах (Рис. 8, \Diamond).

Рисунок 8 – Влияние взаимного расположения компонентов на конверсию NO_x : сравнение послойных загрузок компонентов CeO_2 -Zr O_2 и HFeBeta и катализатора [CeO_2-Zr O_2 +HFeBeta] (3/1). Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O_2 , 6 об. % H₂O в N₂

<u>→CeO₂-ZrO₂||HFeBeta (3-1)</u>. Система с обратной последовательностью загрузки слоев компонентов проявляет значительную активность в NH₃-CKB (Рис. 8, \Box), и конверсия NO_x на ней достигает 58 %.

Результаты, полученные при послойном расположении оксидного и цеолитного компонентов, подтверждают предположение об образовании NO₂ как основного интермедиата на CeO₂-ZrO₂ с его последующей миграцией через газовую фазу к цеолитному компоненту, на котором происходит реакция «быстрого» CKB. Более того, сопоставление данных по активности CeO₂-ZrO₂ в образовании NO₂ и активности \rightarrow CeO₂-ZrO₂||HFeBeta (3-1) в NH₃-CKB показали, что скорость реакции восстановления NO_x в интервале температур 200–350 °C полностью определяется скоростью образования NO₂, а наблюдаемое снижение конверсии при T_{peaku} > 400 °C связано с термодинамикой

реакции окисления NO и окислением аммиака на входном слое CeO_2 -ZrO₂. Полученные данные позволяют заключить, что образование NO₂ на оксидном компоненте является стадией, определяющей скорость восстановления NO_x по двухстадийному маршруту.

Следует, однако, отметить, что \rightarrow CeO₂-ZrO₂||HFeBeta (3-1) значительно уступает по активности катализатору [CeO₂-ZrO₂+HFeBeta] (3/1) (Рис. 8, \square и •). Основное отличие этих двух систем заключается в том, что компоненты комбинированного катализатора перемешаны и находятся в тесном контакте друг с другом, тогда как в системе \rightarrow CeO₂-ZrO₂||HFeBeta (3-1) они пространственно разделены на слои. В связи с этим, было изучено влияние этого фактора на каталитические характеристики катализатора [CeO₂-ZrO₂+HFeBeta] (3/1).

Влияние степени контакта между компонентами на активность композитного катализатора в NH₃-CKB

Влияние степени контакта между оксидным и цеолитным компонентами на активность [CeO₂-ZrO₂+HFeBeta] (3/1) в реакции NH₃-CKB было изучено путем варьирования этого параметра следующими способами:

1. минимальная степень контакта достигалась смешением предварительно спрессованных гранул исходных компонентов (фракция 0,2–0,4 мм);

2. средняя степень контакта была получена смешением порошков компонентов при помощи шпателя (без их растирания в ступке) с последующим прессованием, измельчением получаемых таблеток и отсеиванием фракции 0,2–0,4 мм;

3. максимальная степень контакта достигалась смешением порошков компонентов и их тщательным перетиранием в ступке с последующим спрессовыванием в таблетки и измельчением до фракции 0,2–0,4 мм.

Сопоставление каталитических данных (Рис. 9), полученных на композитных катализаторах с разной степенью контакта между компонентами показало, что смесь гранул HFeBeta и CeO₂-ZrO₂ (•) обладает более высокой активностью при $T_{peakq} > 400$ °C по сравнению с послойной загрузкой (□). Увеличение степени контакта (▲) способствует значительному повышению активности во всем интервале температур, а максимальной конверсии NO_x удается достичь путем тщательного механического перемешивания порошков HFeBeta и CeO₂-ZrO₂ (•).

Рисунок 9 – Влияние степени контакта между компонентами композитного катализатора [CeO₂-ZrO₂+HFeBeta] (3/1) на его активность в реакции NH₃-CKB. Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂

Следует отметить, что попытка дальнейшего увеличения степени контакта путем перемешивания оксидного и цеолитного компонентов в шаровой мельнице в течение 5, 10 и 15 мин не привела к заметному возрастанию каталитической активности.

Исследование микроструктуры HFeBeta (рис. 10А) и его механической смеси с CeO_2 -ZrO₂ (рис. 10Б) методом СЭМ показало, что при тщательном механическом перемешивании удается достичь максимальной степени контакта между компонентами благодаря тому, что каждый микрокристалл HFeBeta плотно окружен более мелкими частицами CeO_2 -ZrO₂, и дальнейшее увеличение интенсивности перемешивания не приводит к существенным изменениям микроструктуры каталитической системы.

Анализ литературных данных позволяет заключить, что причиной увеличения каталитической активности в зависимости от степени контакта между компонентами может быть возрастание скорости образования диоксида азота в результате его вовлечения в реакцию «быстрого» СКВ. Это вызвано тем, что реакция окисления NO имеет отрицательный порядок по NO₂ [2] в результате ее торможения из-за прочной адсорбции диоксида азота на поверхности катализатора и/или образования устойчивых поверхностных нитратов. Таким образом, вовлечение NO₂ в реакцию «быстрого» СКВ при плотном контакте между компонентами позволяет увеличить скорость окисления NO.

Рисунок 10 – Микрофотографии А) HFeBeta и Б) катализатора [CeO₂-ZrO₂+HFeBeta] (станд.)

Влияние соотношения оксид/цеолит на активность композитной системы в NH₃-CKB

Для проверки предположения о том, что фактором, лимитирующим скорость реакции NH_3 -СКВ на композитном катализаторе, является скорость образования NO_2 на CeO_2 -ZrO₂, были изучены каталитические свойства образцов [CeO₂-ZrO₂+HFeBeta], в которых соотношение оксидного и цеолитного компонентов варьировалось от 1/3 до 30/1. Анализ зависимости константы скорости реакции NH_3 -СКВ от соотношения CeO_2 -ZrO₂/HFeBeta показал, что каталитическая активность композитных систем быстро возрастает с увеличением содержания оксидного компонента (Рис. 11).

С другой стороны, из приведенного графика видно, что даже малого количества цеолита HFeBeta (CeO₂-ZrO₂/HFeBeta = 30/1) достаточно для обеспечения высокой эффективности удаления NO_x, что объясняется чрезвычайно высокой скоростью протекания реакции «быстрого» СКВ на цеолитном компоненте.

Установленная взаимосвязь между активностью композитного катализатора и содержанием оксидного компонента хорошо согласуется с предположением о том, что

лимитирующей стадией реакции восстановления NO_x на композитных катализаторах является стадия образования NO_2 на компоненте CeO_2 - ZrO_2 .

Рисунок 11 – Влияние содержания CeO₂-ZrO₂ (соотношения оксид/цеолит) на активность композитного катализатора [CeO₂-ZrO₂+HFeBeta] в NH₃-CKB. Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂

Взаимосвязь между активностью оксидного компонента в реакции окисления NO и эффективностью композитной системы на его основе в NH₃-CKB

Поскольку данные, полученные при изучении закономерностей протекания реакции селективного каталитического восстановления NO_x на композитных катализаторах, позволяют сделать вывод, что скорость всего процесса лимитируется скоростью образования NO_2 на оксидном компоненте, на следующем этапе исследования была предпринята попытка увеличить активность композитного катализатора путем промотирования оксидного компонента с целью повышения его активности в реакции окисления NO.

Для решения поставленной задачи были приготовлены оксидные компоненты: 8%Mn/CeO₂-ZrO₂ и 8%Mn-8%Ce/CeO₂-ZrO₂, а также композитные катализаторы на их основе. Выбор Mn-Ce композиции был сделан на основе литературных данных о том, что активность Mn-Ce (5–10 мас. % Ce) катализаторов в реакции окисления NO заметно выше, чем образцов, содержащих только Mn.

Исследование каталитической активности модифицированных оксидных компонентов в реакции окисления NO показало, что промотирование CeO_2 -ZrO₂ марганцем приводит к существенному увеличению конверсии NO в NO₂, (Рис. 12A, \circ). Дополнительное введение церия, в свою очередь, способствует повышению максимальной конверсии NO (Рис. 12A, \diamond). Полученные данные позволяют расположить исследуемые катализаторы в следующий ряд по мере возрастания активности в реакции окисления NO:

 CeO_2 - $ZrO_2 \ll Mn/CeO_2$ - $ZrO_2 \ll Mn$ - Ce/CeO_2 - ZrO_2

 H_2 -ТПВ исследование исходного CeO₂-ZrO₂ и модифицированных оксидных компонентов на его основе показало (Рис. 12Б), что возрастание активности в окислении NO на промотированных катализаторах связано с увеличением реакционной способности решеточного кислорода, на что указывает появление пиков с максимумами при 270 и 360 °C, соответствующих последовательному восстановлению $MnO_2 \rightarrow Mn_2O_3 \rightarrow MnO$. Для

системы, дополнительно промотированной Ce, восстановление Mn_2O_3 до MnO происходит при более низкой температуре (335 °C вместо 360 °C) в результате образования смешанного оксида MnO_x -CeO_y.

Рисунок 12 – А) Температурные зависимости конверсии NO в NO₂ на компонентах CeO₂-ZrO₂, Mn/CeO₂-ZrO₂ и Mn-Ce/CeO₂-ZrO₂. Реакционная смесь: 500 м.д. NO, 10 об. % O₂, 6 об. % H₂O в N₂; Б) Профили H₂-TПВ образцов CeO₂-ZrO₂, Mn/CeO₂-ZrO₂ и Mn-Ce/CeO₂-ZrO₂

Сопоставление каталитических характеристик композитных систем на основе CeO_2 -ZrO₂, Mn/CeO₂-ZrO₂ и Mn-Ce/CeO₂-ZrO₂ (Рис. 13) показывает, что модифицирование оксидного компонента Mn существенно увеличивает активность композитного катализатора при T_{peaky} = 100–300 °C (•). Еще более высокой активностью в области низких температур обладает композитный катализатор на основе Mn-Ce/CeO₂-ZrO₂ (•).

Рисунок 13 – Температурные зависимости конверсии NO_x , полученные на композитных катализаторах на основе компонентов CeO_2 -ZrO₂, Mn/CeO₂-ZrO₂ и Mn-Ce/CeO₂-ZrO₂.

Реакционная смесь: 500 м.д. NO, 600 м.д. NH₃, 10 об. % O₂, 6 об. % H₂O в N₂

Полученные данные подтверждают, что стадией, определяющей скорость протекания реакции NH₃-CKB на композитных катализаторах, является окисление NO в NO₂ на оксидном компоненте. Они также позволяют заключить, что увеличение активности оксидного компонента в образовании NO₂ является эффективным способом

регулирования активности композитного катализатора в области низких температур.

<u>3.5 Одновременное удаление NO_x, углеводородов, CO, сажи и избыточного NH₃ на композитных катализаторах</u>

Активность катализатора [Mn-Ce/CeO₂-ZrO₂+FeBeta] (3/1) была исследована в реакциях одновременного удаления NO_x (1), NH₃ (4), CO (6), углеводородов (7) и сажи (8) из модельной газовой смеси.

$$2CO + O_2 \rightarrow 2CO_2 \tag{6}$$

$$C_n H_m + (n+m/4)O_2 \to nCO_2 + m/2H_2O$$
 (7)

$$C + O_2 \to CO_2 \tag{8}$$

Полученные данные показали, что на катализаторе [Mn-Ce/CeO₂-ZrO₂+FeBeta] (3/1) могут с высокой эффективностью одновременно протекать реакции окисления CO, несгоревших углеводородов, сажи и остаточного аммиака (Рис. 14). Более того, высокой конверсии (80–100 %) компонентов газовой смеси удается достичь при достаточно низких температурах (150–400 °C).

Рисунок 14 – Температурные зависимости конверсии CO, C_4H_{10} , NH₃ и NO_x, полученные на композитном катализаторе [Mn-Ce/CeZr+FeBeta] (3/1) в ходе реакции NH₃-CKB в токе смеси, моделирующей состав выхлопных газов дизельных двигателей.

Реакционная смесь: 600 м.д. NH₃, 500 м.д. NO, 500 м.д. C₄H₁₀, 5 об. % CO₂, 200 м.д. CO, 10 об. % O₂, 6 об. % H₂O в N₂

Детальное исследование каталитических характеристик композитного катализатора [Mn-Ce/CeO₂-ZrO₂+FeBeta] (3/1) показало, что наличие в газовом потоке оксидов углерода, *н*-бутана, а также присутствие примеси синтетической сажи (Printex U) не оказывают влияния на эффективность восстановления оксидов азота. Это позволяет сделать вывод, что реакции окисления и NH₃-CKB протекают на разных активных центрах независимо друг от друга.

Полученные данные указывают на возможность использования композитных катализаторов, сочетающих в себе несколько каталитических функций, в качестве новых компактных высокоэффективных систем нейтрализации выхлопных газов дизельных двигателей автомобилей.

выводы

1. Впервые установлены основные закономерности протекания реакции NH₃-CKB NO_x на композитных катализаторах состава [оксидный компонент+цеолитный компонент]. Доказано, что высокая каталитическая активность композитных катализаторов обусловлена эффектом синергизма, возникающим в результате механического смешения компонентов, и установлены причины его возникновения.

2. Предложен двухстадийный маршрут протекания реакции NH_3 -СКВ на композитных катализаторах [оксидный компонент+цеолитный компонент]: 1) окисление NO в NO_2 на оксидном компоненте, 2) восстановление смеси $NO+NO_2$ по механизму «быстрого» СКВ на цеолитном компоненте. Показано, что данный маршрут восстановления NO_x является основным, тогда как вклад реакции «стандартного» СКВ на цеолитном компоненте незначителен.

3. Выявлены основные факторы, способствующие высокой активности композитных катализаторов в реакции восстановления NO_x : а) эффективность оксидного компонента в реакции окисления NO в NO_2 ; б) активность цеолитного компонента в реакции «быстрого» СКВ; в) наличие плотного контакта между микрочастицами компонентов.

4. Установлено, что лимитирующей стадией процесса восстановления оксидов азота на композитных катализаторах является реакция образования NO_2 на оксидном компоненте и его перенос через газовую фазу к поверхности цеолитного компонента. Тесный контакт между компонентами способствует интенсификации реакции окисления NO благодаря вовлечению NO_2 в реакцию восстановления аммиаком и обеспечивает эффективность композитного катализатора в NH_3 -CKB.

5. (150–250 °C) Показано, что низкотемпературная активность композитных катализаторов в реакции NH₃-CKB может быть увеличена путем модификации оксидного компонента марганцем и церием, в результате чего возрастает активность оксидного компонента в окислении NO. Разработан композитный катализатор [Mn-Ce/CeO₂-ZrO₂+FeBeta], обладающий высокой активностью в области температур 150-400 °С, характерной для выхлопных газов дизельного двигателя.

6. Впервые установлено, что на композитных катализаторах могут одновременно и независимо друг от друга протекать реакции окисления (углеводородов, CO, сажи и избыточного аммиака) и реакция NH₃-CKB NO_x. Продемонстрирована принципиальная возможность применения композитных систем для комплексной очистки выхлопных газов автомобилей с дизельными двигателями.

Основное содержание диссертации изложено в следующих работах

1. Fast and Standard SCR in NH_3 -De NO_x : pathways discrimination as the key step for understanding of kinetics / **A.I. Mytareva**, G.N. Baeva, G.O. Bragina, P. Selvam, D.A. Bokarev, A.Yu. Stakheev // Mendeleev Communications. – 2014. – V. 24. – Issue 5. – P. 311–312.

2. Combining NO_x SCR and NH_3 -slip oxidation activity of composite [Fe-Beta + Fe(Mn)MCM-48] catalyst / A.Yu. Stakheev, D.A. Bokarev, **A.I. Mytareva**, R.K. Parsapur and P.Selvam // Mendeleev Communications. – 2014. – V. 24. – Issue 5. – P. 313–315.

Combined catalytic systems for enhanced low-temperature NO_x abatement / A.Yu. Stakheev, A.I. Mytareva, D.A. Bokarev, G.N. Baeva, D.S. Krivoruchenko, A.L. Kustov, M. Grill, J.R. Thøgersen // Catalysis Today. – 2015. – V.258. – Part I. – P. 183–189.

4. New Insights into the Mechanism of Synergistic Effect for $[CeO_2-ZrO_2 + H-Beta]$ CombiCat in NH₃-SCR / **A.I. Mytareva**, A.Yu. Stakheev, G.N. Baeva, D.A. Bokarev, A.L. Kustov, J.R. Thøgersen // Topics in Catalysis. – 2016. – V. 59. – Issue 10. – P. 919–924.

5. Methods for distinguishing fast and standard SCR pathways in NH_3 -De NO_x / **A.I. Mytareva**, D.A. Bokarev, P. Selvam, A.Yu. Stakheev // Book of abstracts of 7th Tokyo Conference on Advanced Catalytic Science and Technology (TOCAT7), Kyoto, Japan. – 2014. – GP3102.

 Управление процессом селективного каталитического восстановления оксидов азота аммиаком на композитных катализаторах [Ce_xZr_{1-x}O₂ + алюмосиликат] / А.Ю. Стахеев,
А.И. Мытарева, Г.Н. Баева, Д.А. Бокарев // Сборник тезисов 7-й Всероссийской цеолитной конференции (7ВЦК), Звенигород, Россия. – 2015. – с. 69–70.

7. New insights into the mechanism of synergistic effect for $[CeO_2-ZrO_2 + H-Beta]$ CombiCat in NH₃-SCR / **A.I. Mytareva**, A.Yu. Stakheev, G.N. Baeva, D.A. Bokarev, A.L. Kustov, J.R. Thøgersen // Book of preprints of 10th International Congress on Catalysis and Automotive Pollution Control (CAPoC10), Brussels, Belgium. – 2015. – p. 55–64.

8. Multifunctional combined catalyst for diesel engine exhaust aftertreatment system / **A.I. Mytareva**, D.A. Bokarev, G.N. Baeva, A.Yu. Stakheev // Book of abstracts of X International Conference Mechanisms of Catalytic Reactions, Svetlogorsk, Kaliningrad region, Russia. – 2016. – p. 253.

9. Highly efficient combined [RedOx + Zeolite] catalysts for selective catalytic reduction of NO_x by NH_3 / **A.I. Mytareva**, D.A. Bokarev, G.N. Baeva, A.Yu. Stakheev // Book of abstracts of IV German-russian seminar on catalysis. Bridging the gap between model and real catalysis, Kloster Banz, Germany. – 2016. – p. 43.

10. Изучение маршрута реакции протекания селективного каталитического восстановления NO_x на композитных катализаторах $[Ce_{0.75}Zr_{0.25}O_2 + H-Beta]$ / А.И. Мытарева, Д.А. Бокарев, Г.Н. Баева, А.Ю. Белянкин, А.Ю. Стахеев / Сборник тезисов VII Молодежной конференции ИОХ РАН, Москва, Россия. - 2017. - с. 30.

11. Композитный катализатор для комплексной очистки выхлопных газов дизельных двигателей / **А.И. Мытарева**, Д.А. Бокарев, Г.Н. Баева, А.Ю. Белянкин, А.Ю. Стахеев // Сборник тезисов Роскатализ-2017, Нижний Новгород, Россия. – 2017. – с. 551–552.

Список литературы

1. Nova, I. Urea-SCR technology for $DeNO_x$ after treatment of diesel exhausts / I. Nova, E. Tronconi – New York: Springer. – 2014. – 716 P.

2. Metkar, P.S. Experimental and kinetic modeling study of NO oxidation: Comparison of Fe and Cu-zeolite catalysts / P.S. Metkar, V. Balakotaiah, M.P. Harold // Catal. Today. – 2012. – V. 184. – Issue 1. – p. 115–128.

Благодарности

Выражаю благодарность научному руководителю д.х.н., проф. Стахееву А. Ю. за помощь и поддержку в ходе выполнения работы.

Благодарю к.х.н. Бокарева Д. А. (Лаборатория №35) за помощь в изучении кислотности образцов цеолитов методом NH₃-TПД, к.х.н. Кашина А. С. (Отдел структурных исследований ИОХ РАН) за исследование образцов методом СЭМ, Криворученко Д. С. (Лаборатория №35) за проведение исследования образцов методом H₂-TПВ, Тюрникова А. П. (Международный аналитический центр ИнтерЛаб) за анализ содержания железа в исходных коммерческих образцах цеолитов методом ААС, к.х.н. Порсина А. В. (Институт катализа им. Г.К. Борескова СО РАН) и к.х.н. Аликина Е. А. (ООО «Экоальянс») за предоставленные образцы и их характеризацию.

Я искренне признательна членам коллективов лабораторий №35, №14 и №38 за внимание и интерес к моей работе, ценные советы и моральную поддержку на всех этапах ее выполнения.

Выражаю благодарность датской компании Haldor Topsøe A/S за предоставление гранта в рамках программы поддержки российских аспирантов, специализирующихся в области гетерогенного катализа.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № Грант 15-03-07802 А).

ДЛЯ ЗАМЕТОК